d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch.

نویسندگان

  • R Bruni
  • D Martin
  • J Jiricny
چکیده

The role of d(GATC) sites in determining the efficiency of methyl-directed mismatch repair in Escherichia coli was investigated. Transfection of host bacteria, both proficient and deficient in mismatch repair, with a series of artificially constructed M13 heteroduplexes showed that a decrease in the total number of d(GATC) sequences within these vectors lowered the efficiency of repair in vivo. Single hemimethylated d(GATC) sequences were still able to direct the correction event to the unmethylated strand, providing that the mismatch to d(GATC) site distance was shorter than approximately 1 kb. In excess of this distance, the effect of hemimethylated d(GATC) sites on mismatch correction was almost unnoticeable. The directionality of the repair event could be dictated by d(GATC) sequences situated both upstream and downstream of the mispair, suggesting that this important antimutagenic pathway can proceed bidirectionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escherichia coli Frameshift Mutation Rate Depends on the Chromosomal Context but Not on the GATC Content Near the Mutation Site

Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization pr...

متن کامل

Spontaneous mutations occur near dam recognition sites in a dam- Escherichia coli host.

The mismatch repair system of Escherichia coli K12 removes mispaired bases from DNA. Mismatch repair can occur on either strand of DNA if it lacks N6-methyladenines within 5'-GATC-3' sequences. In hemimethylated heteroduplexes, repair occurs preferentially on the unmethylated strand. If both strands are fully methylated, repair is inhibited. Mutant (dam-) strains of E. coli defective in the ade...

متن کامل

Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions.

A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanism...

متن کامل

Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair

DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied t...

متن کامل

Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair.

The hemimethylated d(GATC) sequence that directs Escherichia coli mismatch repair can reside on either side of a mismatch at a separation distance of 1,000 bp or more. Initiation of repair involves the mismatch-, MutS-, and MutL-dependent activation of MutH endonuclease, which incises the unmethylated strand at the d(GATC) sequence, with the ensuing strand break serving as the loading site for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 1988